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CP-Nonconservation and Electric Dipole Moment of 
Fermions in the Nonsymmetric Kaluza-Klein Theory 

M. W. Kal inowski  ~ 

Received September 3, 1986 

A generalization of minimal coupling is proposed and the usual Dirac equation 
is generalized within the nonsymmetric Kaluza-Klein theory and the nonsym- 
metric Jordan-Thiry theory. The dipole electric moment of fermions of order 
10 -31 cm is obtained. 

1. INTRODUCTION 

In this paper we consider the Dirac equation in the nonsymmetric 
Kaluza-Klein theory (Kalinowski, 1983a,c, 1984a) and in the nonsymmetric 
Jordan-Thiry theory (Kalinowski, 1983b, 1984b). We introduce a generaliz- 
ation of the minimal coupling scheme between spinor fields and gravitational 
and electromagnetic fields. In this way, we get in the Lagrangian a term 
that describes an interaction between the dipole electric moment of fermions 
and the electromagnetic field from the nonsymmetric Kaluza-Klein theory. 
We also get a term that has a pseudomass character. Both terms break P C  

and P. The value of this dipole electric moment is the same as in symmetric 
theory (Thirring, 1972; Kalinowski, 1981a,b). 

The paper is organized as follows. In Section 2 we introduce some 
elements of the nonsymmetric Kaluza-Klein theory and the nonsymmetric 
Jordan-Thiry theory. In Section 3 we describe the minimal coupling scheme 
in the nonsymmetric theory of gravitation. In Section 4 we introduce a 
generalization of minimal coupling for the Dirac field and discuss new 
effects appearing in our model, i.e., the dipole electric moment and 
pseudomass-like term. 
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2. ELEMENTS OF THE NONSYMMETRIC K A L U Z A - K L E I N  
THEORY AND THE NONSYMMETRIC JORDAN-THIRY 
THEORY 

Let us introduce the principal  fiber bundle  P over  space- t ime E with 
the structure group  U(1)ej and with the project ion 7r. We define on P a 
connect ion o~ (an e lect romagnet ic  connect ion) .  For a curvature f~ of  a we 
have 

n = ~ - * ( 1 / 2 F ~  ~ A ~ )  (1) 

where ~r* is a horizontal  lift and F,~ is the e lect romagnet ic  field. 
We introduce on P a f rame 

0 A= (~-*(0~), 05 = X~), A = const (2) 

where 0~ is a f rame on E. In the nonsymmet r i c  Ka luza -Kle in  theory _P is 
nonsymmetr ica l ly  metr ized in a natural  way and has a linear connect ion 
w~ which is compat ib le  with this nonsymmet r i c  metric. The metric  tensor  
on P is as follows (Kal inowski ,  1983a): 

y = ~* (g )  - 05@ 05 (3) 

where  

g ~  = g(~r + gE~r (4) 

is a nonsymmet r i c  metric  tensor  on E [see Kal inowski  (1983a-c,  1984a) 
for details]. The fol lowing notat ion is used in this paper .  Capi tal  italic 
indices A, B, C = 1, 2, 3, 4, 5; lower-case Greek  indices a,/3, y = 1, 2, 3, 4. 
The bar  above gO~ indicates that  o5~ is defined on E. Here  L) means  the 
covariant  exterior  derivative with respect  to o5~. Let us introduce a l inear 
connect ion compat ib le  with the nonsymmet r i c  metric  tensor  y, with 

D C 
DTA+B = D y a s  - TADQBc(F) O = 0 ( 5 )  

where 

A A C wB=FBc. O 

D is the exterior covar iant  derivative with respect  to the connect ion w~ 
[see Kal inowski  (1983a) for details] and Q~c(F)  is the tensor  of  torsion 
for  the connect ion a gO B. 

The solution of  (5) is as follows: 

a {~r (go~)+~Ag H~,~O ~AHt~O ~ (6) 
gO" = \ ~ A g ' ~ (  H ~  - 2 F ~ ) O  ~ I ~ / 
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where 
Hey = -H~e (7a) 

gaeg ~'~ Hv,~ + g,~g~V H~v = 2 g,~ag ~V Fev (7b) 

o3~ is the connection on space-time E with the following properties: 

/Sg~+t3_ = Og~e _ g~a(~3v(p)fir = 0, (~]~(F) = 0 (8) 

i.e., it is a second connection from Moffat's theory of gravitation (Moffat, 
1979, 1981, 1982). 

l 2 
In the Kaluza-Klein theory we have A = 2G~/c,  where G is a gravita- 

tional constant and c is the velocity of light in vacuum. This condition 
originates from the consistency between the equation in the Kaluza-Klein 
theory and Einstein's equation (see Kaluza, 1921, Lichnerowicz, 1955, 
Mottat, 1979, 1981). In the nonsymmetric Jordan-Thiry Theory we have 
in place of  (3) 

3' = ~r*(g)_p2, 0 , |  (9) 

where p = p(x) is a scalar field on E. From (5) we get (see Kalinowski, 1981b) 

~ A 2 a~ 5 ly  1 -'~a" 5 
�9 "rr*(we)- +-~p g H~t~O ~ H  e,O'+;geag'  'p,,~O 

A 

w B = t2p2 g~fl(H.yt3 -2Fve)OV + pg(V~')p,v05 ] ~ g6,g(~)p,~O v 

(1.10) 

where ~(~) is the inverse tensor for g(~) i.e., g(~)g(~e) = 8~ and H~e satisfies 
conditions (7a) and (7b) (see Kalinowski, 1981b and 1983b for details). 
The connection o3~ satisfies the condition (8). In the Mottat theory of 
gravitation the connection I~e is defined such that: 

- - t ~  - c ~  2 a 
W e = ~o~-~8 e W (11) 

where 
o- ly I,V= WvO ~" = 1 / 2 ( W ~ -  W,~v)O r (1.12) 

(see Kalinowski, !984b, 1984c, 1986). Let Dw mean a covariant exterior 
derivative with respect to W e on E. 

On the manifold E, i.e., on space-time, we introduce a Levi-Civita 
symbol and Cartan dual base 

~ e e - y t S ,  7 ~ 1 2 3 4  = ( - d e t  g)~/2 (13) 

1 
'0~ = 2"3  ffa ̂  ff~ ̂  0-e~e~a (14) 

= 1/4ff ~ ^ r/~ (15) 

It is easy to see that we get the nonsymmetric Kaluza-Klein theory from 
the nonsymmetric Jordan-Thiry theory if p --- 1. 
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3. DIRAC LAGRANGIAN IN MOFFAT'S THEORY OF 
GRAVITATION 

In Kalinowksi (1986) we found  the minimal coupl ing scheme for the 
Dirac field in the Moffat theory o f  gravitation. We get the Lagrangian 

L( IV, O) = lihc(471 ^ 190 + 1~0 ^ I0)  + mcr1470 (16) 

where 1 = y " ~ ,  and 

(17) 
D47 = D~47 + ~ineF( a /  lp,)2 W47 

where a is a coupling constant  for f e rmion  current in the Moffat theory 
(Moffat, 1979, 1981, 1982), /P1 is the Planck length, lp|=(O/hc) 1/2~ 
10 -33 cm, n is a nonzero  integer, and e~ = 1. In Kalinowski (1986) we proved 
that the Lagrangian (17) is equal to 

L( IV, O) = �89 471 ̂  ( s  - �89 lTVtp ) 

+ (s189162 ^ I~1 + mcr1470 (18) 

where 

btp  = dO + ~ t3 - - w~o '~O , D O dr) - ~ ~ = - O{r~wt~ (19) 

and o-~ satisfies the fol lowing properties:  

{ r~=0  (20) 

2[o'~, o~] K ~, ~K j. ~ ~ = 8,,o'a - ~.~o" + 6A o-~ - 77 cr.A (21) 

[o-i, yP] = 172(8~y ~ - ~?o~y~) (22) 

7"  are ordinary Dirac matrices satisfying the conventional  relationships, 

{y", y~} = 2 r / ~  (23) 

a~ ~ y~ r/~t3yt ~ "q~a~ = 8~, = 
K v  p,  cr~ = ~7 o'~, ~r~ = ~ o - ~  (24) 

The contragredient  spinor 47 is defined by 

47 = 0+/3, /3 + = 13 (25) 

where 

y~'+ = /3y ' /3  - '  (26) 

and 

cr.~ + = -/3cr~fl -~ (27) 

The superscript plus sign denotes Hermitian conjugation.  The spinor 0 was 
defined in Kalinowski (1986) as a 0-form of  Z- type:  

s  G L ( 4 ,  R ) ~ G L ( 4 ,  C )  [o rGL+(4 ,  R ) ]  (28) 
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and 

~r" ,,~ = ( SY~ ~/ aA~ )l A :  : 6 :  (29) 

[see Kalinowski (1986) for more details]. It is easy to see that 

" ~ ~,,) (30) o-~ = ~ty , 

satisfies all properties (20-22). In Kalinowski (1986) we proved that the 
Lagrangian (16) or (17) has U(1)v-gauge invariance, which is connected 
to a compactification of the dilatation subgroup R+ of GL$(4, R) = R+|  
SL( 4, R ), where 

GL+(4, R) = {A E GL(4, R), det A >  0} 
(31) 

SL(4, R)  = {A �9 GL(4, R), det A = 1} 

R+ = {e p, p �9 R}, where p = ln(det A), and R+ acts in the following way on 
~0, .O, and l~': 

ff'-~ i f " =  IV+ dqS, 05 = - 3 1 n ( d e t  A) (32a) 

[ .neF[ a'~ 2 A)]~b 4,-, 0 '= e x p L , ~ k ~ ) l n ( d e t  (32b) 
J 

r .neF[ a'~ 2 ] 
0-~ , '=exp/ - tTC--~  | s - - /  ln(det A ) j ~  (32c) 

k b nC \ lel/ 

4. DIRAC E Q U A T I O N  IN THE N O N S Y M M E T R I C  KALUZA-  
KLEIN THEORY AND IN THE N O N S Y M M E T R I C  J O R D A N -  
THIRY THEORY 

In this section we deal with a generalization of the Dirac equation on 
a manifold P (a nonsymmetrically metrized electromagnetic bundle). The 
results we obtain are similar to Thirring's (1972) results in the symmetric 
case and similar to the results from Kalinowski (1981b). We introduce 
several kinds of derivatives, and using them, we get a generalization of the 
Dirac equation. We define the spinor fields q,, q~, ~b : E --> C 4 on E and spinor 
fields ~ ,  ~" on _P, ~ : P-~ C 4. For �9 and �9 we have 

~(pg)=o- (g  l)O(p),  o_eL(C 4) 

tp(pg) : f (p )o- (g)  (33) 

where p = (x, g~)�9 P; gl, g � 9  U(1)ep Spinor fields g, and q~ on E are defined 
modulo a phase factor and should be written Of, ~;r rather than 4', q~ ( f  is 
a section of a bundle _P, f :  E -+ _P). Thus obviously we have 

�9 ( f ( x ) )  = ~r*(Ot(x)), o f -_f*gr 
(34) 

, i , ( f (x)) :  ~*(,r/(x)), ~ = f*~  
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Let us define an electromagnetic gauge derivative d 1 of the field ~F: 

d,q~ = hor d ~  (35) 

(horizontality is understood in the sense of the electromagnetic connection 
a on _P). 
Let us define a matrix 7s 

It is easy to see that 

,)/5= ,)/1 ,y2,)/3 ,y4 (36) 

(3,5) 2 = -1  (37) 

{,yA, ,)/B} = 2 ~ A B  (38) 

A, B = 1, 2, 3, 4, 5, where yA = (7~, 75) a n d  g A B  = diag(-1 ,  -1 ,  -1 ,  +1, -1) .  
We also have 

5 Y = flysfl-~, ~ = ~+fl  (39) 

SO 
A+ "Y = f l , y A ~ - I  (40) 

We perform an infinitesimal change of the frame 0 A 

o tA  = 0 A _{_ ~ 0  A o A  A B = --eBO (41) 

If the spinor field q' corresponds to 0 A and qt, to 0 'A, then we have 

(42) ~ , = ~ + 6 ~ = ~ + . v .  AB A 
'~ Or A E B 

where 

AB O ~  (43) 

Y.: GL(5,  R ) ~  GL(4,  C)  (44) 

is a homomorphsim of Lie groups and -B O-A is the differential of E at the unit 
AB element. O-A satisfies the following properties similar to O-~ [see (20)-(22)]: 

~ = 0 (45) 

O'C ) g A C  O'BD (46) = t ~ A O ' c - -  t O c o - A - - g  O-AC 

AB (O-A, y c )  = 1/2(6ACyB _~,CByA) (47) 

where 

gABg Bc = 6 c,  7 a -~- g A B  ~/B 

A - A C (~.AB = ~ A C ~ . B  GrAB = gcBO'A 

We can use the following representation of &,~: 
-~B 1 O-A = 8[ ')/A, B ]  (48) 
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Notice that the dimension of  the spinor space for a 2n-dimensional space 
is 2" and it is the same for a (2n+  1)-dimensional space. We take a spinor 
field for a five-dimensional space _P and assume that the dependence on the 
fifth dimension is trivial, i.e., equation (33) holds. Taking a section, we get 
spinor fields on E (of the same dimension as the spinor space). In the case 
of  an arbitrary gauge group G the situation is more complicated-=after  
projecting on E we obtain several different spinor fields. Let us consider a 
covariant derivative of  spinor fields �9 and �9 on _P, 

D ~  = d ~  a ~ B  ^ B  A "~-tOBO'A~X t ,  D~------~ d ~  (49) -- ~ t  O'A O.) B 

with respect to the linear connection co A from the nonsymmetric Kaluza-  
Klein theory [equation (6)] or from the nonsymmetric  Jordan-Thiry  theory 
[see equation (10)]. 

Now we introduce derivatives D, i.e., "gauge"  derivatives of a new 
kind (similar to those in Kalinowski (1981a,b, 1982, 1983d, 1984c). These 
derivatives may be treated as a generalization of minimal coupling between 
the spinor and electromagnetic fields on P: 

D ~  = hor D ~ ,  D ~  = hor D ~  (50) 

(horizontality is understood in the sense of electromagnetic connection a 
on _P). Using (6) and (10), one gets 

D ~  = I ) ~  - ~a [g~" (H:,~ -2F~,~)'y~ + H~r'y~ ] 7s',tr O ~' 
(51) 

DXP = D ~  +~aX~[g~ (Hv~ - 2Fw)  3, ~ + H~.y~]ySO v 

in the nonsymmetric Kaluza-Kle in  theory or 

DW = f ) ~  -~Ap2[g~'~(H:,,~ - 2Fv~) 7~ + H~v3,~ ] 3,5~ 0 r 
(52) 

o g ,  = 6 , ~  +-~ap2~[g'~~ - 2 f ~ ) ' y , ,  + n~d.y 'o  ~ 

in the nonsymmetric Jordan-Thiry  theory, where 

I ) ~  = hor E3~, I ) ~  = h o r / ) ~  (53) 

The derivative 15 is at the same time a covariant derivative with respect to 
both o3~ and the "gauge".  It introduces an interaction between the elec- 
tromagnetic and graviational fields with Dirac spinors in the classical way 
in general relativity or in the Einstein-Cartan theory (Trautman, 1973). 
Now let us turn to the Lagrangian (18) and lift it on the manifold _P. In 
order to do this we have to pass from /3 to D and from ~b, ~ to ~ ,  ~ .  In 
this case the Dirac Lagrangian takes the form 

t = � 8 9 1 8 9 1 8 9  (54) 
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After some algebra one gets 

L =  L(Xt r, W, a)  - ilpit~-l/2 qHt3,~ ~r ys  ort3'~aIr ~ 

+ ilpt~-l/Zqgt~'~(H~,~ - 2 F ~ ) ~ y S o - ~  

- ~ilv, d - ' /2q  (g~t~lFt3~)Cir ysxt r r (55) 

where le~ is the Planck length, q is the elementary charge, ~ is the fine 
structure constant, and 

L('~, IV, ~ ) = kihe[ee l ^ (f)'~ --l  ineF Cr ) 

+ (I)CIr + �89 Vi, rCI r) ^ lqr]+ mcfT ~ (56) 

L (~ ,  W, a)  describes the interaction between the spinor field geometry in 
the nonsymmetric theory of gravitation and the electromagnetic field [as in 
Kalinowski (1986)]. In the case of the nonsymmetric Jordan-Thiry theory 
we get 

L = L ( ~ ,  W, a)  - ilpla-1/2gp2H~CIrySot~xlr~ 

+ ilpjce -1/2gp2gt3. (Hi, ~ _ 2 F ~  ) ~ y s t r ~  r 

-~ilpla-l /2 gp2(g[~'~]Ft~)~ y s ~  ~ (57) 

so we see that we get additional terms. They are 

ilp, a - ~ / 2 q [ g ~ ( H ~  -2F~,~)~ySo'~-Ht~,~CItySo ' t3 '~]~ (58) 

and 

- ilplol-l/2q(g[t~'~]Ft3,~)CIrySqt ~ (59) 

The first term (58) describes the interaction between the dipole electric 
moment of fermions with the electromagnetic field, which is represented 
by tensors H~t3 and F~a [see equations (7a) and (7b); for more details see 
Kalinowski (1973a)]. This is similar to the symmetric Kaluza-Klein theory 
(Thirring, 1972; Kalinowski, 1981a,b). However, now, due to the skew- 
symmetric part of the metric on the space-time E, this term is more compli- 
cated. The second term exists only due to the skew-symmetric part of the 
metric and is zero if g t ~ l =  0. It describes a parity-breaking interaction 
(pseudomass-like term). In the case of the Jordan-Thiry theory we get the 
same terms in (57) as in (55). The only difference is that here we also get 
an interaction with the scalar field p. This field is connected with the 
gravitational constant in the Jordan-Thiry theory. This results in the effective 
value of the dipole electric moment of fermions changing according to this 
field. If the skew-symmetric part of the metric is zero, we get the results of 
Kalinowski (1981b). In the same way as in Kalinowski (1981b) we can 
introduce operators of discrete transformations on P: II (space reflection), 
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T (time reversal), C (charge conjugation), and the combined transformation 
H C, 0 = H CT. In the same way as in Kalinowski (1981 b) we get nonconserva- 
tion of P C  and T due to the dipole electric moment of fermions. After 
projection on E we get ordinary operators of these transformations, well 
known in the literature. The value of our dipole electric moment is of course 
the same, 

Ip la - l /2q  ~ 10-31q cm (60) 

The second term (59) breaks parity and this breaking is of the same order 
as (60). We consider all of these effects as "interference effects" between 
gravitational and electromagnetic fields from the nonsymmetric Kaluza- 
Klein theory. In the nonsymmetric Kaluza-Klein theory and Jordan-Thiry 
theory we also have different "interference effects" between the gravitational 
and electromagnetic fields (Kalinowski, 1983a-c; 1984a,b). 
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